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Summary. We survey recent results on the inverse kinematic problem arising in 
geophysics. The question is whether one can determine the sound speed (index of 
refraction) of a medium by measuring the travel times of the corresponding ray 
paths. We emphasise the anisotropic case. 

1 Introduction 

The inverse kinematic problem can be described as follows An acoustic object 
D in 3D is probed for the wave speed c( x), x = (Xl, X2, X3) ED, by measuring 
travel times (times-of-flight) between points on the boundary r of D. A 
travel time function T(x, y) with source in y E r is related to the wave 
speed via the eikonal equation c(x)lV'xT(x,y)1 = 1. One asks to recover c 
from measurements T(x, y) made for all x, y E r. Travel time inversion is 
also an essential part of ultrasound techniques in medicine and mechanics 
(non-destructive evaluation). 

From a geometrical point of view T measures the distance between two 
points with respect to the isotropic Riemannian metric ds2 = c(x)-2dx2. 
Therefore d(x, y) = T(x, y) for x, y E r is also called the boundary distance 
function of the metric. One asks if the boundary distance function uniquely 
determines the metric and therefore also c. The case considered above cor­
responds to an isotropic medium. In several physical examples the index 
of refraction is anisotropic, i.e. the wave speeds depend on direction, arises 
in several physical situations. One example is when an elastic medium has 
residual stress [8]. Another example arises in geophysics. It has been realized 
rather recently [2], by measuring the travel times of seismic waves, that the 
inner core of the Earth might exhibit anisotropic behavior, that is the speed 
of waves depends also on direction there with the fast direction parallel to the 
Earth's spin axis. I an anisotropic medium we model the wave speed as given 
by a symmetric, positive definite matrix g = (gij) (x), that is, a Riemannian 
metric in mathematical terms. The problem is to determine the Riemannian 
metric from the lengths of geodesics (ray paths) joining points in the bound­
ary which we will denote now by dg(x, y), to make clear the dependence on 
the metric g. 
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In this paper we will describe recent progress on the problem of determin­
ing g from dg . In differential geometry this inverse problem has been studied 
because of rigidity questions and is known as the boundary rigidity problem. 
We review the boundary rigidity problem in Section 2 and the linearized 
problem in Section 3 which involves the problem of inverting the geodesic X­
ray transform. In Section 4 we describe a recent local results for the boundary 
rigidity problem, that is, when a Riemannian metric is assumed to be close 
to a given one. 

2 The boundary rigidity problem 

Rigidity problems in differential geometry can be briefly formulated as fol­
lows: to what extent is the local geometry of a Riemannian manifold deter­
mined if some global properties are known? In particular, are two manifolds 
isometric under the assumption that the corresponding global properties are 
the same? In the last case the manifold is said to be rigid with respect to the 
corresponding global property. The boundary rigidity problem can be stated 
as to what extent is a Riemannian metric on a compact manifold with bound­
ary determined from the distances between boundary points. We give below a 
more precise mathematical formulation. In what follows we consider general 
Riemannian manifolds with boundary but one can have in mind, as the main 
example the case of domains in Euclidean space in 2d or 3D equipped with 
a Riemannian metric. 

Let (M,g) be a compact Riemannian manifold with boundary 8M, and 
g' be another Riemannian metric on M. We say that g and g' have the 
same boundary distance-function if dg(x, y) = dgl (x, y) for arbitrary bound­
ary points x, y E 8M, where dg (resp. dg/) represents distance in M with 
respect to g (resp. g'). It is easy to give examples of pairs of metrics with 
the same boundary distance-function. Namely, if tp : M --> M is an arbitrary 
diffeomorphism of M onto itself which is the identity on the boundary, then 
the metrics g and g' = tp* g have the same boundary distance-function. We 
say that a compact Riemannian manifold is boundary rigid if this is the only 
type of nonuniqueness. Many examples can be given of manifolds that are 
not boundary rigid. For instance, if an inner point Xo E M \ 8M is such 
that dist (xo, 8M) > SUPx,YE8M dg(x, y), then we can change the metric g in 
a neighborhood of Xo without changing the boundary distance-function. An­
other example is the hemisphere provided with the standard metric. These 
examples show that the boundary rigidity problem should be considered un­
der some restrictions on the geometry of geodesics. The most usual of such 
restrictions is simplicity of the metric. A Riemannian manifold (M, g) (or the 
metric g) is called simple if the boundary 8M is strictly convex and any two 
points x, y E M are joined by a unique geodesic. The natural conjecture is 
that every simple manifold is boundary rigid. The problem in this generality 
was proposed by Michel [M]. Simple Riemannian manifolds with boundary 


